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A solution technique for longitudinal Stokes
flow around multiple aligned cylinders
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This technique solves the two-dimensional Poisson equations in geometries involving
cylindrical objects. The method uses three fundamental solutions, corresponding to
a line force, a line couple and a pressure gradient, on each cylinder. Superposition
of the fundamental solutions due to all the cylinders involved, while approximately
satisfying the no-slip condition on each cylinder, yields a mobility matrix relating the
various forces and motions of all the cylinders. Any specific problem can be solved
by prescribing the motions of the cylinders and solving the matrix. For problems
involving few cylinders or with a sufficient degree of symmetry this can be done
analytically.

Once constructed, the general method is applied analytically to a series of specific
problems. The permeability of an eccentric annulus is derived. The result is numerically
indistinguishable from the exact solution to the problem, but unlike the exact solution
the present one is obtained in closed form. The drag on two parallel rods moving
past one another is also derived and compared to the exact solution. In this case
the result is accurate for rod separations down to about 0.2 times the rod diameter.
Finally the drag on a rod moving in a triangular array of identical rods is derived.
Here it is shown that due to screening it is sufficient to include the six nearest
neighbours, regardless of the rod separation. Although the present examples are all
worked out analytically, the matrix can also be solved numerically, in which case any
two-dimensional arrangement of cylindrical objects can be studied.

1. Introduction
Consider longitudinal steady-state viscous flow in a prismatic geometry consisting

of a set of parallel infinitely long prismatic solid bodies. Such a flow involves no
accelerations anywhere and hence no inertia. It is therefore governed by the two-
dimensional Poisson equation,

∂v2

∂x2
+
∂v2

∂y2
=

1

µ

∂P

∂z
, (1)

where v = v(x, y) is the longitudinal (z-parallel) fluid velocity and ∂P/∂z is the
longitudinal pressure gradient. Any particular problem in this category is distinguished
by the shape and position of the boundary curve of each body along with an auxiliary
condition on each body, for example a prescribed motion or a prescribed resultant
force or couple or any combination thereof. In particular, the pressure gradient may
or may not vanish.

In practical problems, where bodies have finite length, equation (1) holds only
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approximately. But the approximation will be good wherever the problem has this
two-dimensional nature. This criterion will be satisfied at all points that are much
nearer to a solid body than to the end of a body. At points close to the end of
a body, the flow will be three-dimensional and may involve inertia. In the type of
micromechanical problems considered below, such regions may be simply ignored
provided that they constitute a negligible part of the overall volume. This leads to a
condition of slenderness of the interstices,

H/L� 1, (2)

where H is the interstitial spacing between two solid boundaries and L is the length
of the bodies.

There are two important special cases of this type of problem. The first is the
problem of estimating the longitudinal Darcy permeability of an array of fixed rods.
Here the flow is driven entirely by the pressure gradient. Most of the work reported
concerns infinite regular arrays of identical cylinders. The simplest approach seems
to be the free-surface model by Happel (1959). Howells (1974) developed a self-
consistent model in which distant particles are represented as a Darcy resistance
while the nearest-neighbour interactions are solved explicitly. The best solution so
far seems to be that published by Drummond & Tahir (1984) using Lord Rayleigh’s
(1892) method of singularities. Incidentally, they comment that Happel’s simple cell
model is fairly good at large rod separations.

The other case concerns estimating the hydrodynamic drag on a rod moving relative
to a surrounding array of rods, such as in the elongational flow of a suspension of
parallel fibres. In this case the pressure gradient vanishes and the flow is driven by
the relative motion of the rods. The problem was first described by Batchelor (1971),
who suggested a simple axisymmetric cell model, in a sense analogous to the Happel
model, with a test rod at the centre and a concentric cylindrical boundary to represent
the surrounding particles. Again, there is also a self-consistent model, suggested by
Acrivos & Shaqfeh (1988), where a test particle is suspended in a liquid having
the effective properties sought. The most rigorous analysis so far was presented by
Shaqfeh & Fredrickson (1990), who solved the multi-body interactions by multiple
scattering based on slender-body theory (Batchelor 1970). All these methods are
reasonably good at sufficiently large rod separations, but none is accurate at small
rod separations, say of the order of a rod radius or less. This is either because of
ignoring the details of the fibre arrangement, as in the case of Bachelor’s cell model
or the self-consistent approach, or because of neglecting fluid couples on the particles,
as in the case of slender-body theory. It should be mentioned that the method of
Shaqfeh & Fredrickson applies to three-dimensional fibre arrangements, not just the
parallel rods considered here. Simplified cell models are useful for modelling flows
of non-Newtonian fluids (Goddard 1976; Pipes 1994), where they are often the only
route possible.

It will be shown here that in the two-dimensional case of aligned cylinders it is quite
possible to solve this type of problem accurately without simplifying the geometry.
The objective of the analysis is to solve the many-body problem for a general array
that is not restricted by symmetry conditions nor represented by any simplified cell
boundary condition. We shall study the mixed resistance/mobility problem of N
circular cylinders of different radii in a general array, each moving longitudinally at
a prescribed axial velocity. Compared to the corresponding solution by the method
of reflections, as suggested by Shaqfeh & Fredrickson, the main advantage of the
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Figure 1. (a) Circular boundary; (b) motions.

present solution lies in the inclusion of fluid couples. This will allow particles to come
considerably closer together.

When computing the drag on a test rod in an infinite array the question arises
as to how many neighbouring rods need to be included in the model. Clearly, rods
sufficiently far from the test rod do not contribute to the force on the test rod. This
is sometimes referred to as screening and will be addressed here.

2. Mobility method
The solution scheme developed here is akin to Stokesian dynamics in two dimen-

sions (Brady & Bossis 1988). A solution v(x) for the two-dimensional velocity field
will be constructed by superposition of a finite set of fundamental solutions, v(α)(x),
each of which matches a restricted motion and a particular moment of force on
a circular boundary curve in the (x, y)-plane. The curves may be used to represent
actual solid boundaries, in which case their motion should be interpreted as that of a
solid body. However, they may also serve more general purposes, as I shall exemplify
later.

As illustrated in figure 1, each circle Γα is assigned a centre xα and a radius aα and
is associated with four motions,

U α = (uα, ωα
x, ω

α
y, v

α), (3)

where uα is the linear z-velocity of Γα, ωα
x and ωα

y are angular velocities about the x-
and y-axes and vα is the mean velocity within Γα, i.e.

vα =
1

π(aα)2

∫
Aα
v dA. (4)

Notice that all of these motions are purely longitudinal and preserve a circular
cylindrical geometry; thus the angular motion is actually a motion of longitudinal
shear. When the cylinders are used to model rigid bodies we must require the angular
motions to vanish; nevertheless this motion is a necessary degree of freedom if we
want to include fluid couples. Let v(α)(x) be the fluid velocity field generated by the
motion of a single boundary Γα. The exact solution v(α)(x) consists of a sum of
four fundamental solutions to the two-dimensional Poisson equations, each of which
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exactly matches one of the four motions:

v(α)(x)=



1

2πµ

(
(fα + pα) ln

ρ

|x− xα| + lαx
y − yα
|x− xα|2 − l

α
y

x− xα
|x− xα|2

)
if |x− xα| > aα

1

2πµ

(
(fα + pα) ln

ρ

aα
+ lαx

y − yα
(aα)2

− lαy x− x
α

(aα)2
+ 1

2
pα
(

1− |x− x
α|2

(aα)2

))
if |x− xα| 6 aα.

(5)

In the solution outside Γα all the terms are singular at xα. Inside Γα the solution
consists of a constant velocity (the first term), simple uniform shear (second and
third terms), and a parabolic field (the last term). On Γα itself the inside and outside
solutions match exactly. These different field contributions are illustrated in figure 1(b).
The coefficients

F α = (fα, lαx, l
α
y , p

α) (6)

are moments of force associated with Γα: fα is the total force per unit length applied
on Γα, lαx and lαy are the applied couples per unit length and pα is the total force per
unit length in the interior of Γα due to the pressure gradient,

pα = −π(aα)2 ∂P

∂z
. (7)

Also, ρ is a constant arbitrary radius that must be introduced to make the velocity
field determinate. It is easy to show that U α and F α are energy dissipation conjugate.

Now consider a set of N circular curves Γα, as illustrated in figure 2, each having
a centre at xα and a radius aα. The many-body solution is obtained by adding up the
fields due to all the 4N forces and couples considered:

v(x) =

N∑
α=1

v(α)(x). (8)

This velocity field is defined everywhere. It is smooth and continuous and satisfies
Poisson’s equations exactly everywhere except on Γ , where it is generally discon-
tinuous, i.e. slips. This solution should be combined with a self-equilibrium condition,
stating that the sum of forces and the sum of couples must vanish, to ensure that the
velocity field is steady.

It remains to determine the resultant velocities U α of each Γα so as to satisfy
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approximately a no-slip condition on the cylinder surfaces. To do this we separate U α

into four contributions; one due to F α itself, one due to other Γ that are completely
separate from xα, one due to any Γ enclosing xα and one due to the Γ enclosed by
Γα:

U α =

N∑
β=1

U α
(β) = U α

(α) +
∑
|xβ−xα|
>aβ+aα

U α
(β) +

∑
|xβ−xα|
<aβ−aα

U α
(β) +

∑
|xα−xβ |
<aα−aβ

U α
(β). (9)

For the first set, U α
(α), of cylinder velocities there is only one that matches the field v(α)

exactly:

uα(α) =
fα + pα

2πµ
ln
ρ

aα
, (10)

ωα
x(α) =

lαx
2πµ

1

(aα)2
, (11)

ωα
y(α) =

lαy

2πµ

1

(aα)2
, (12)

vα(α) =
1

2πµ
((fα + pα) ln

ρ

aα
+ 1

4
pα). (13)

The second set of velocities cannot generally satisfy a no-slip condition with the
remaining fields since these fields are nonlinear on Γα. Instead, we match them with
the linearization (tangent plane) of the field about the centre, xα, of Γα:∑
|xβ−xα|
>aβ+aα

uα(β) =
∑
|xβ−xα|
>aβ+aα

v(β)(x
α)

=
1

2πµ

∑
|xβ−xα|
>aβ+aα

(
(fβ + pβ) ln

ρ

|x− xβ | + lβx
yα − yβ
|xα − xβ |2 − l

β
y

xα − xβ
|xα − xβ |2

)
, (14)

∑
|xβ−xα|
>aβ+aα

ωα
(β)x =

∑
|xβ−xα|
>aβ+aα

∂

∂y
v(β)(x

α)

=
1

2πµ

∑
|xβ−xα|
>aβ+aα

(
− (fβ + pβ)

yα − yβ
|xα − xβ |2

+ lβx
(xα − xβ)2 − (yα − yβ)2

|xα − xβ |4 + 2lβy
(xα − xβ)(yα − yβ)

|xα − xβ |4
)
, (15)
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|xβ−xα|
>aβ+aα

ωα
(β)y = − ∑

|xβ−xα|
>aβ+aα

∂

∂x
v(β)(x

α)

=
1

2πµ

∑
|xβ−xα|
>aβ+aα

(
(fβ + pβ)

xα − xβ
|xα − xβ |2 + 2lβx

(xα − xβ)(yα − yβ)

|xα − xβ |4

+ lβy
(yα − yβ)2 − (xα − xβ)2

|xα − xβ |4
)
, (16)

∑
|xβ−xα|
>aβ+aα

vα(β) =
∑
|xβ−xα|
>aβ+aα

v(β)(x
α)

=
1

2πµ

∑
|xβ−xα|
>aβ+aα

(
(fβ + pβ) ln

ρ

|x− xβ | + lβx
yα − yβ
|xα − xβ |2 − l

β
y
xα − xβ
|xα − xβ |2

)
. (17)

The third set, produced by sources Γβ completely enclosing Γα, is obtained from the
internal part of the field (5). Although this may not be immediately evident, the inside
field of (5) is linear on any circle within Γβ , and hence satisfies the no-slip condition
on Γα exactly:

∑
|xβ−xα|
<aβ−aα

uα(β) =
1

2πµ

∑
|xβ−xα|
<aβ−aα

(
(fβ + pβ) ln

ρ

aβ
+ lβx

yα − yβ
(aβ)2

− lβy x
α − xβ
(aβ)2

+ 1
2
pβ

(
1− |x

α − xβ |2
(aβ)2

−
(
aα

aβ

)2
))

, (18)

∑
|xβ−xα|
<aβ−aα

ωα
x(β) =

1

2πµ

∑
|xβ−xα|
<aβ−aα

(
lβx

1

(aβ)2
− pβ y

α − yβ
(aβ)2

)
, (19)

∑
|xβ−xα|
<aβ−aα

ωα
y(β) =

1

2πµ

∑
|xβ−xα|
<aβ−aα

(
lβy

1

(aβ)2
+ pβ

xα − xβ
(aβ)2

)
, (20)
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|xβ−xα|
<aβ−aα

vα(β) =
∑
|xβ−xα|
<aβ−aα

1

π(aα)2

∫
Aα
v(β) dA

=
1

2πµ

∑
|xβ−xα|
<aβ−aα

(
(fβ + pβ) ln

ρ

aβ
+ lβx

yα − yβ
(aβ)2

− lβy x
α − xβ
(aβ)2

+ 1
2
pβ

(
1− |x

α − xβ |2
(aβ)2

− 1

2

(
aα

aβ

)2
))

. (21)

The fourth set, due to a source Γβ completely enclosed by Γα, may be omitted here
for reasons of symmetry.

The solution for more than one cylinder is only approximate. The boundary
condition is exactly satisfied only asymptotically in the limit when the cylinders are
widely spaced; it will be shown below, however, that the error is negligible in most
cases.

Substituting equations (10)–(21) into equation (9), we may write these equations in
terms of a mobility matrix

u1

...
uN

ω1
x
...
ωN
x

ω1
y

...
ωN
y

v1

...
vN



=
1

2πµ




A11 A12 · · · A1N

A12 A22 A2N

...
...

A1N A2N · · · ANN

 [D] [E] [H]

[
D̃
]

[B] [F] [I]

[
Ẽ
] [

F̃
]

[C] [J]

[
H̃
] [

Ĩ
] [

J̃
]

[G]





f1

...
fN

l1x
...
lNx

l1y
...
lNy

p1

...
pN



,

(22)

where the components of the mobility matrix are given in table 1 and a tilde denotes
transpose. Now, we may write the mobility matrix for any set of parallel cylinders,
apply 4N auxiliary conditions and solve for the remaining forces and velocities.

3. Annular flow
As a first example, consider the pressure-driven flow in an infinite eccentric annulus

between two cylinders Γ 1 and Γ 2, illustrated in figure 3. Since all the boundaries
in this problem are fixed we should prescribe the velocities (u1, u2, ω1

y , ω
2
y , v

1, v2) =
(0, 0, 0, 0, 0, V ), where V is the superficial velocity (i.e. the flow rate divided by the
cross-sectional area of Γ 2). The equation system (22) can be considerably reduced
by considering the symmetries of the problem: H11 = A11, H22 = H21 = A12 = A22,
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β = α β, α separated β enclosing α β enclosed by α

Aαβ ln ρ/aα ln ρ/|xα − xβ | ln ρ/aβ ln ρ/aα

Bαβ (aα)−2 (xα − xβ)2 − (yα − yβ)2

|xα − xβ |4 (aβ)−2 (aα)−2

Cαβ (aα)−2 (yα − yβ)2 − (xα − xβ)2

|xα − xβ |4 (aβ)−2 (aα)−2

Dαβ 0 (yα − yβ)/|xα − xβ |2 (yα − yβ)/(aβ)2 0

Eαβ 0 −(xα − xβ)/|xα − xβ |2 −(xα − xβ)/(aβ)2 0

Fαβ 0 2
(xα − xβ)(yα − yβ)

|xα − xβ |4 0 0

Gαβ ln ρ/aα + 1
4

ln ρ/|xα − xβ |


1
2

+ ln ρ/aβ

− 1
2
(|xα − xβ |/aβ)2

− 1
4
(aα/aβ)2




1
2

+ ln ρ/aα

− 1
2
(|xβ − xα|/aα)2

− 1
4
(aβ/aα)2



Hαβ ln ρ/aα ln ρ/|xα − xβ |


1
2

+ ln ρ/aβ

− 1
2
(|xα − xβ |/aβ)2

− 1
2
(aα/aβ)2

 ln ρ/aα

Iαβ 0 −(yα − yβ)/|xα − xβ |2 −(yα − yβ)/(aβ)2 (yα − yβ)/(aα)2

Jαβ 0 (xα − xβ)/|xα − xβ |2 (xα − xβ)/(aβ)2 −(xα − xβ)/(aα)2

Table 1. Mobilities.

a2

x1

Γ 2

Γ 1

a1
h

x2
+ +

Figure 3. Eccentric annulus.

J21 = −J12 = E12, J11 = J22 = E21 = E11 = E22 = 0, C12 = C22, which are all deduced
from table 1. Thus

0 = A11f1 + A22f2 + E12l2y + A11p1 +H12p2,

0 = f1 + f2 + p1 + p2,

0 = C11l1y + C22l2y − E12p2,

0 = l1y + l2y + (E12/C22)(f1 + p1),

0 = A11f1 + A22f2 + E12l2y + G11p1 + G12p2,

2πµV = H12f1 + A22f2 − E12l1y + G12p1 + G22p2.


(23)
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It is seen from the second and fourth of equations (23) that the system is automatically
self-equilibrated. After a fair amount of algebra we obtain the solution for p2 as

2πµ
V

p2
=

(G22 − A22) +
G12 −H12

A11 − G11
(G12 − A22)−

G12 − A22 +
G12 −H12

A11 − G11
(G11 − A22)

A11 − A22 − (C11/C22)e
(H12 − A22)

+


G12 − A22 +

(G12 −H12)(G11 − A22)

A11 − G11
+

(
G12 −H12

A11 − G11

C11

C22
+ 1

)
(H12 − A22 − e)

A11 − A22 − (C11/C22)e

−G
12 −H12

A11 − G11
− 1

e,
(24)

where

e =
(E12)2

C11 − C22
(25)

is a non-dimensional eccentricity parameter which vanishes in the concentric case.

Now introducing the mobilities,

A11 = ln
ρ

a1
, A22 = ln

ρ

a2
, C11 = (a1)−2, C22 = (a2)−2,

G11 =
(

ln
ρ

a1
+ 1

4

)
, G22 =

(
ln
ρ

a2
+ 1

4

)
,

G12 =

(
ln
ρ

a2
+

1

2
− 1

4

(
a1

a2

)2
)
,

H12 =

(
ln
ρ

a2
+

1

2
− 1

2

(
a1

a2

)2
)
,


(26)

one obtains the permeability of the annulus as

K

(a1)2
=

1

8

[(
a2

a1

)2

+

(
a1

a2

)2
]
− 1

4

+
1

4

1− (a1/a2)2(1 + ln(a2/a1)2)

ln(a2/a1)2 − 2(a2/a1)2e

[
1−

(
a2

a1

)2

+ 2

(
a2

a1

)2

e

]

−1

2

((
a2

a1

)2

− 1

)
e, (27)

where

e =
h2

(a2)2 − (a1)2

(
a1

a2

)2

, (28)
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+
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Figure 4. Free-surface flow.

and

K

(a1)2
=

(
a2

a1

)2

πµ
V

p2
(29)

is a non-dimensional permeability.
In fact this result is numerically indistinguishable from the exact solution, using

complex variables, by Piercy, Hopper & Winny (1933):

K

(a1)2
=

1

8

[(
a2

a1

)2

−
(
a1

a2

)2
]
− 1

2

h2F2/(a2)2(a1)2 − h2/(a1)2

B − A

−
(

h2F2

(a2)2(a1)2
− h2

(a1)2

) ∞∑
n=1

n exp [−n(A+ B)]

sinh n(B − A)
, (30)

where

A = 1
2

ln
F +

√
F2 + (a2)2

F −√F2 + (a2)2
, B = 1

2
ln
F − h+

√
F2 + (a2)2

F − c−√F2 + (a2)2
,

F =
(a2)2 − (a1)2 + h2

2h
. (31)

The advantage of the result (27) is that it is a closed form whereas the exact solution
(30) involves an infinite series.

Of course when e = 0, we recover the result for a concentric annulus:

K

(a1)2
=

1

8

(
a2

a1

)2

− 1

8

(
a1

a2

)2

+
1

4

((a1/a2)2 − 1)2

(a1/a2)2 ln(a1/a2)2
, (32)

which is an exact solution.

4. Free-surface flow about a cylinder
Happel (1959) estimated the longitudinal permeability of a square array of cylinders,

based on the fact that the boundary of the square unit cell is a stress-free surface. He
then approximated the square cell by a circular one of the same cross-sectional area,
which is a considerably simpler problem and can be solved exactly. The following
example shows how to obtain Happel’s result by means of the mobility method.

For the two concentric cylinders in figure 4, all couples and angular velocities
vanish. Also, the system must be self-equilibrated,

f1 + f2 + p1 + p2 = 0, (33)
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and as no pressure gradient is applied within the rod, p1 = 0. Now Happel’s free-
surface condition is simply expressed as

f2 = 0. (34)

The equations (22) then reduce to

u1 =
p2

2πµ
(−A11 +H12), u2 =

p2

2πµ
(−A12 +H22),

v1 =
p2

2πµ
(−H11 + G12), v2 =

p2

2πµ
(−H12 + G22).

 (35)

Introducing the mobilities from table 1 (35) yields

u1 =
p2

2πµ

(
− ln

a2

a1
− 1

2

(
a1

a2

)2

+
1

2

)
, u2 = 0,

v1 =
p2

2πµ

(
− ln

a2

a1
− 1

4

(
a1

a2

)2

+
1

2

)
, v2 =

p2

2πµ

(
1

2

(
a1

a2

)2

− 1

4

)
.

 (36)

The superficial average fluid velocity within Γ 2 relative to the rod Γ 1 is now obtained
as

V = (v2 − u1)− (v1 − u1)

(
a1

a2

)2

=
p2

2πµ

[
ln
a2

a1
+

(
a1

a2

)2

− 1

4

(
a1

a2

)4

− 3

4

]
, (37)

which may be expressed as an effective non-dimensional permeability,

K

(a1)2
=

1

2

(
a2

a1

)2

ln
a2

a1
+

1

2
− 1

8

(
a1

a2

)2

− 3

8

(
a2

a1

)2

. (38)

This result is identical to that obtained by Happel (1959).

5. Telescopic flow
Consider the flow generated between the two cylinders in figure 3 when a purely

axial motion is imposed on one cylinder relative to the other. Due to the self-
equilibrium condition f1 + f2 = 0, the no-rotation condition ω1

y = ω2
y = 0 and the

identities E11 = E22 = E21 = 0, A12 = A22 and C12 = C22, the equations reduce to

2πµu1 = (A11 − A22)f1 + E12l2y , 2πµu2 = 0,

0 = C11l1y + C22l2y , 0 = E12f1 + C22(l1y + l2y).

}
(39)

The solution is

f1 =
2πµ(u1 − u2)

A11 − A22 + C11(E12)2/[(C22)2 − C11C22]
. (40)

Introducing the mobilities from table 1 yields

ξ =
2π

ln (a2/a1) + (h/a1)2/[1− (a2/a1)2]
, (41)

where ξ is a non-dimensional drag coefficient, ξ = f1/(u1 − u2)µ.
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Figure 5. Two rods in relative motion.

In the concentric case, h = 0, equation (41) reduces to Batchelor’s (1971) cell model
for semi-dilute fibre suspensions,

ξ =
2π

ln(a2/a1)
, (42)

which is exact.

6. Two rods in relative motion
Consider two parallel infinite rods of equal radius a, separated by a distance h and

immersed in an infinite liquid, figure 5. We seek the force f per unit length of each
rod as a function of the velocity, 2u, of one rod relative to the other.

The exact solution for the velocity field was obtained by Batchelor (1971):

v = −u ln
(h+

√
h2 − 4a2)(h/2− r cos θ) + r2 − a2

(h−√h2 − 4a2)(h/2− r cos θ) + r2 − a2

/
ln
h+
√
h2 − 4a2

h−√h2 − 4a2
, (43)

here expressed in cylindrical coordinates. It is evident that v = −u on the boundary
r = a for any choice of a, h and θ subject to h > 2a. Now differentiation of (43) and
integration around the boundary of one of the rods yields the force f per unit length
of the rod:

f = µa

∫ 2π

0

dv

dr
(a) dθ =

4πµu

ln[(h+
√
h2 − 4a2)/(h−√h2 − 4a2)]

. (44)

For convenience we express the result in non-dimensional form, by introducing the
drag coefficient ξ = f/(2µu) and the non-dimensional spacing H = h/2a. Thus

ξ =
2π

ln[(H +
√
H2 − 1)/(H −√H2 − 1)]

. (45)

We now solve the same problem using the mobility method. The rods move
longitudinally in opposite directions at velocities

u1 = −u2 = u (46)

without rotating,

ω1
y = ω2

y = 0. (47)



Longitudinal Stokes flow around multiple cylinders 211

25

20

15

10

5

0 1.5 2.0 2.5 3.0

H

ξ

Figure 6. Drag coefficient ξ vs. rod spacing H for two rods, mobility solution (thick line) and
exact solution (thin line).

It then follows from the symmetry that

f1 = −f2 = f, −l1y = −l2y = l. (48)

Note that the couples are not self-equilibrated in this case; the remaining couple
simply acts on the ‘container’, or gives rise to an inertial flow far away, but it does
not affect the drag force between the two rods. Because of the above symmetries and
the fact that E11 = E22 = 0, equations (22) reduce to

2πµu = (A11 − A12)f − E12l, 0 = E12f − (C11 + C12)l, (49)

which yield

f =
2πµu

(A11 − A12)− [(E12)2/(C11 + C12)]
, l = f

E12

C11 + C12
. (50)

With the mobilities from table 1 we obtain, in non-dimensional form,

ξ =
π

ln 2H − [1/(4H2 − 1)]
. (51)

For large spacings, H , the drag coefficient reduces to ξ = π/ ln 2H , which amounts to
ignoring the couples.

We may now compare the mobility solution to the exact solution. The mobility
result (51) is plotted in figure 6 (thick line) together with the exact solution (45)
(thin line). The graph shows that the mobility solution is accurate within about 6%
down to H = 1.2, i.e. a rod separation of 0.2 times the rod diameter. At such a small
separation the interaction will be very close to pairwise. Hence this limitation should
apply to a general many-rod problem as well.
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Figure 7. Rod moving in triangular array: (a) 7-cylinder model; (b) 8-cylinder model.

7. Rod moving in a triangular array of parallel rods
We finally consider the drag on a test rod moving relative to six stationary

neighbours in a triangular array of identical rods, as illustrated in figure 7(a). Applying
the mobility method to seven cylinders in a general arrangement leads to a 21 × 21
mobility matrix. This is of course rather intractable analytically. However, due to the
triangular symmetry in figure 7(a), along with the condition that all the cylinders 2–7
perform the same motion, the mobility matrix can be reduced to 3× 3: u1

u2

ω2
y

 =
1

2πµ

 A11 6A12 6E12

A21 I J
E12 J L

 f1

f2

l2y

 , (52)

where

I = A22 + 2(A23 + A24) + A25, J = E22 − 2(E23 + E24)− E25,

L = C22 + C23 − C24 − C25 −√3(F23 + F24).

}
(53)

In addition we apply the following constraints:

ω2
y = 0, f1 + 6f2 = 0. (54)

Solving equations (52)–(54) we obtain

f1 =
12πµ(u1 − u2)

6A11 − 12A12 + I − (1/L)(6E12 − J)2
,

l2y = −f1E
12 − J/6
L

.

 (55)

The mobilities are obtained from table 1:

A11 = ln
ρ

a
, A12 = ln

ρ

h
, E12 = 1/h,

I = 5 ln
ρ

h
+ ln

ρ

a
− ln 6, J =

5

2h
, L =

1

a2
+

35

12h2
.

 (56)

Introducing these into (55) yields

f1 =
12πµ(u1 − u2)

7 ln(h/a)− ln 6− 49
4
/(h2/a2 + 35/12)

. (57)
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The result can be expressed non-dimensionally as a drag coefficient, ξ = f1/µ(u1−u2):

ξ =
12π

7 ln 2H − ln 6− 49/(16H2 + 35/3)
. (58)

At large rod spacings or, equivalently, with couples neglected, equation (51) reduces
to

ξ =
12π

7 ln 2H − ln 6
. (59)

We now turn to the case of an unbounded triangular array. Adding another layer
of neighbouring rods, beyond the first six, would require another four equations.
Although a numerical solution would present no difficulty, an analytical solution
is most likely intractable. Here I choose to apply a constraint similar to that in
Batchelor’s cell model. By placing a rigid wall around the first layer of neighbours, as
shown in figure 7(b), we may emulate the continuation of the array. This will answer
the question of whether or not more cylinders need to be included. Owing to the
way in which we have formulated the mobility method, this can be done by simply
including an additional cylinder Γ 8 enclosing the other seven, as shown in figure 7(b).
This only adds one equation to the system:

u1

u2

u8

ω2
y

 =
1

2πµ


A11 6A12 A18 6E12

A21 I A28 J

A18 6A28 A88 6E82

E12 J E82 L




f1

f2

f8

l2y

 , (60)

with

ω2
y = 0, u2 = u8, f1 + 6f2 + f8 = 0. (61)

The equations reduce to

2πµu1 = [A11 − A12 − 6(1/L)E12E12 + E12(1/L)J]f1 + [A18 − A12 + (1/L)JE12]f8,

2πµu2 = [A12 − 1
6
I − (J/L)E12 + 1

6
J2/L]f1 + [A28 − 1

6
I + 1

6
J2/L]f8,

u2 = 0, 0 = E12f1 + Jf2 + Ll2y ,


(62)

where we have made advance use of the symmetry A18 = A28 = A88 and the fact that
E82 = 0. The solution is

f1 = [2πµ(u1 − u2)]

/[
A11 − A12 + E12(1/L)(J − 6E12)

−(6A12 − 6(J/L)E12 − I + J2/L)
A18 − A12 + (1/L)JE12

6A18 − I + J2/L

]
,

f2

f1
=

1

6

(
6A12 − 6(J/L)E12 − I + J2/L

6A18 − I + J2/L
− 1

)
,

f8

f1
= −6A12 − 6(J/L)E12 − I + J2/L

6A18 − I + J2/L
, l2y = −E

12

L
f1 − J

L
f2.


(63)
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Figure 8. Drag coefficient ξ vs. rod spacing H for seven rods in a triangular array (thick line);
Batchelor’s cell-model (lower thin line); Shaqfeh & Fredrickson (upper thin line).

Introducing the mobilities (56) and, A18 = A28 = A88 = ln ρ/a8, we obtain

f1 = 2πµ(u1 − u2)

/ ln
h

a
− 7/2

h2/a2 + 35/12
−
(

ln 6− ln
h

a
− 35/4

h2/a2 + 35/12

)

×
ln
a8

h
− 5/2

h2/a2 + 35/12

5 ln
a8

h
+ ln

a8

a
− ln 6− 25/4

h2/a2 + 35/12

 . (64)

There is now a choice as to the radius a8. If Γ 8 is placed far away, i.e. a8/h � h/a,
the seven-rod result (58) is recovered, as expected. For modelling purposes, the most
sensible choice would be a8 =

√
3h or a8 = 2h, but as I wish to prove the point that

screening makes Γ 8 unnecessary, I will set a8 = 3h/2, which is the most conservative
thing to do without letting Γ 8 intersect the rods. This yields, in non-dimensional form,

ξ = 2π

/ ln(2H)− 7/2

4H2 + 35/12
−
(

ln 6− ln(2H)− 35/4

4H2 + 35/12

)

×
5/2

4H2 + 35/12
− ln 3

2

25/4

4H2 + 35/12
− ln(2H)− 6 ln 3

2
+ ln 6

 . (65)

Now plotting equations (58) and (65) reveals that the two coincide (the thick line
in figure 8). This shows that it makes no difference whether Γ 8 is included or not, so
it is quite sufficient to include the first layer of neighbours when modelling an infinite
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triangular array of rods. The sceptics may still want to try setting a8 to something
smaller, e.g. a8 =

√
3h−a corresponding to the smallest circle that touches the second

nearest neighbour. This still makes no difference, except it behaves strangely at small
h, when Γ 8 intersects the rods. The point here is that screening of the second layer of
neighbours is most effective at small rod separations (screening is of course total as
H → 1), and (65) shows that it is as good as total at large separations, too.

We may also compare this result to the simple cell model of Batchelor,

ξ =
2π

ln 2H
, (66)

figure 8 (bottom thin line), or to the result of Shaqfeh & Fredrickson for aligned
random rods,

ξ =
4π

ln 2
√

3H2/π+ ln ln 2
√

3H2/π+ 0.1585
, (67)

figure 8 (top thin line). The main difference between the Shaqfeh & Fredrickson
theory and the present one is their neglect of fluid couples; I believe therefore that
the only reason why (67) differs from (59) is that Shaqfeh & Fredrickson considered
a random array rather than a triangular array.

8. Concluding remarks
The main result of this work is the mobility method for studying Stokes flow within

and between cylindrical surfaces. The modelled velocity field always satisfies Poisson’s
equations exactly, while the approximation lies in the fluid velocity on the cylinder
boundaries. The method is thus approximate in general, although it produces exact
results in certain cases. It yields highly accurate or virtually exact solutions to some
important problems and thus offers more accurate and more general solutions than
earlier methods.

The examples elaborated here belong to either of two categories: purely pressure
driven or purely shear driven. More general problems may of course involve both.
For each of these categories, I chose to examine one problem that possesses an exact
solution and thus serves as a test problem. The (eccentric) annular flow problem
tests the method’s performance for pressure-driven flows. Here its performance turns
out to be perfect. The two-rod problem tests the method’s performance for shear-
driven flows. Here the evidence is that the singularity method is accurate for cylinder
separations down to about 0.2 of a cylinder diameter, which is at least an order of
magnitude less than the earlier models. For rod separations smaller than that the
interaction is likely pairwise and dominated by the flow in the thinnest portion of
the gap between the rods; this could be treated quite simply based on the lubrication
approximation.

The most complex example brought up here is that of the drag on a test rod
in a triangular array of similar rods. This illustrates the phenomenon of screening:
including only the first six neighbours of the test cylinder gives the same result as
including the continuation of the infinite array.

The mobility matrix was solved analytically for regular cylinder arrangements. It
can of course be solved numerically, in which case general arrangements may be
studied. Such a solution can deal with non-uniform cylinder diameters as well as a
general lateral arrangement of the cylinders. The cylinders must not overlap, however.
This method has the advantage, over for example a finite element analysis, that it
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requires at most 4N degrees of freedom, and is therefore potentially much more
powerful. Numerical analysis of general arrays using this technique should provide
new insight into issues such as channelling in fibrous porous media, screening and the
influence of rod arrangement and diameter distribution.

The Swedish Research Council for Engineering Sciences (TFR) is acknowledged
for financing this work.
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